Given a string S and an array arr[] of words, the task is to return the number of words from the array which is a subsequence of S.
Examples:
Input: S = “programming”, arr[] = {“prom”, “amin”, “proj”}
Output: 2
Explanation: “prom” and “amin” are subsequence of S while “proj” is not)Input: S = “geeksforgeeks”, arr[] = {“gfg”, “geek”, “geekofgeeks”, “for”}
Output: 3
Explanation:” gfg”, “geek” and “for” are subsequences of S while “geekofgeeks” is not.
Naive Approach: The basic way to solve the problem is as follows:
The idea is to check all strings in the words array arr[] which are subsequences of S by recursion.
Below is the implementation of the above approach:
C++
// C++ code for the above approach: #include <bits/stdc++.h> using namespace std; bool isSubsequence(string& str1, int m, string& str2, int n) { if (m == 0) return true; if (n == 0) return false; // If last characters of two strings // are matching if (str1[m - 1] == str2[n - 1]) return isSubsequence(str1, m - 1, str2, n - 1); // If last characters are not matching return isSubsequence(str1, m, str2, n - 1); } // Function to count number of words that // are subsequence of given string S int countSubsequenceWords(string s, vector<string>& arr) { int n = arr.size(); int m = s.length(); int res = 0; for (int i = 0; i < n; i++) { if (isSubsequence(arr[i], arr[i].size(), s, m)) { res++; } } return res; } // Driver Code int main() { string S = "geeksforgeeks"; vector<string> arr = { "geek", "for", "geekofgeeks", "gfg" }; // Funtion call cout << countSubsequenceWords(S, arr) << "\n"; return 0; }
Time Complexity: O(m*n)
Auxiliary Space: O(m) for recursion stack space
Efficient Approach: The above approach can be optimized based on the following idea:
- Map the index of characters of the given string to the respective characters array.
- Initialize the ans with the size of arr.
- Iterate over all the words in arr one by one.
- Iterate over each character.
- Find strictly greater index than prevIndex in dict.
- If the strictly greater element is not found, it means the current word is not a subsequence of the given string, so decrease res by 1.
- Else update prevIndex.
- After iterating over all the words, return ans.
Below is the implementation of the above approach:
C++
// C++ code for the above approach: #include <bits/stdc++.h> using namespace std; // Function to count number of words that // are subsequence of given string S int countSubsequenceWords(string s, vector<string>& arr) { unordered_map<char, vector<int> > dict; // Mapping index of characters of given // string to respective characters for (int i = 0; i < s.length(); i++) { dict[s[i]].push_back(i); } // Initializing res with size of arr int res = arr.size(); for (auto word : arr) { // Index where last character // is found int prevIndex = -1; for (int j = 0; j < word.size(); j++) { // Searching for strictly // greater element than prev // using binary search auto x = upper_bound(dict[word[j]].begin(), dict[word[j]].end(), prevIndex); // If strictly greater index // not found, the word cannot // be subsequence of string s if (x == dict[word[j]].end()) { res--; break; } // Else, update the prevIndex else { prevIndex = *x; } } } return res; } // Driver Code int main() { string S = "geeksforgeeks"; vector<string> arr = { "geek", "for", "geekofgeeks", "gfg" }; // Function call cout << countSubsequenceWords(S, arr) << "\n"; return 0; }
Time Complexity: O( m * s * log(n) ), where m is the length of the given string, s is the max length of the word of arr and n is the length of arr
Auxiliary Space: O(n)